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Preface 

A modern computational tool, artificial neural networks (ANNs), was used to 
construct a series of prediction and forecasting models for two different scale 
watersheds - the Sava River and a segment of the Mississippi River. The purpose 
of this study is to provide another useful tool for military operation. The Military 
Hydrology Program, Coastal and Hydraulics Laboratory (CHL), Vicksburg, MS, 
U.S. Army Engineer Research and Development Center (ERDC), funded this 
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Pokrefke, Jr., Chief, Modeling Systems Branch, Estuaries and Hydro-Sciences 
Division. 

The study was conducted by Dr. Bernard B. Hsieh and CPT Charles L. 
Bartos, Modeling Systems Branch. Dr. William D. Martin and Mr. Thomas L. 
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guidance and information for the Sava River watershed. Drs. Kuo-Lin Hsu and 
Hoshin V. Gupta, University of Arizona, Tucson, AZ, provided technical peer 
review for the report. Drs. Bin Zhang and R. S. Govindaraju, Purdue University, 
West Lafayette, IN, provided technical assistance. 

During publication of this report, Dr. James R. Houston was Director of 
ERDC, and COL James S. Weiler, EN, was Commander. 

The contents of this report are not to be used for advertising, 
publication, or promotional purposes. Citation of trade names 
does not constitute an official endorsement or approval of the 
use of such commercial products. 
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1    Introduction 

Background 

The ability to forecast a river's flow and stage characteristics can be useful in 
providing a warning to those in the immediate area of impending catastrophic 
events typically associated with flood conditions. Furthermore, the ability to 
perform expedient forecasting can assist water resources management personnel 
in regulating reservoir outflows during low river flows. For military applica- 
tions, the accurate forecasting of river stage and flow is critical during any 
military operation since this directly impacts a military unit's force mobility 
capability. 

Most hydrologic processes exhibit a high degree of temporal and spatial 
variability, and are further plagued by issues of nonlinearity of physical 
processes, conflicting spatial and temporal scales, and uncertainty in parameter 
estimates. The capability exists to extract the relationship between the inputs and 
outputs of such a process, without the physics being explicitly provided. It is also 
possible to provide a map from one multivariable space to another, given a set of 
data representing that mapping. These properties of Artificial Neural Networks 
(ANNs) may be well suited to the problems of estimation and prediction in 
hydrology. 

Two major approaches for modeling the rainfall-runoff or prediction of river 
flow have been developed in the literature: conceptual (physical basis) modeling 
and system theoretic modeling. Conceptual models are important in understand- 
ing hydrologic processes.   There are many practical situations, such as stream 
flow forecasting, where the main concern is making accurate prediction at 
specific watershed locations. In a situation for predicting desired locations, a 
hydrologist may prefer not to expend the time and efforts required in developing 
and implementing a conceptual model or numerical model, but instead imple- 
ment a simpler system theoretic model. ANNs provide the capability to supple- 
ment hydrological modeling in a fraction of the time. 

The development of such system theoretic hydrologic models, both the linear 
modeling approach and nonlinear decomposition and recursive parameter 
approach has been used for many years. However, the former approach does not 
attempt to represent the nonlinear dynamics inherent in the transformation of 
input series to output series and therefore may not always perform well. The 
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latter approach, the nonlinear decomposition and recursive parameter approach, 
allows the model parameters to vary with time and can to some extent 
compensate for the model structure errors that arise from such assumptions. The 
computational procedures are complicated. 

Recently, significant progress in the fields of nonlinear pattern recognition 
and system control theory have made this possible through advanced 
computational techniques available through ANNs. The significant contribution 
of this modern technique is to solve the nonlinearity and time-delay problem for 
hydrological applications. 

Applications of ANNs in rainfall-runoff modeling and stream flow 
forecasting have been described in many sources. The algorithms to perform 
these approaches were from backpropagation (Hjelmfelt and Wang 1996), time- 
delayed (Karunanithi et al. 1994), recurrent C (Carriere, Mobaghegh, and 
Gaskari, 1996), radial-basis function (Fernando and Jayawardena 1998), modular 
(Zhang and Govindaraju 1998), to self-organizing (Hsu, Gupta and Sorooshian 
1998). It is noted that only one reference for each algorithm is cited. 

Study Objective and Scope 

The objective: To demonstrate the applicability of the system theoretic ANN 
approach in developing effective nonlinear models of a river stage, river flow 
forecasting process without the need to explicitly represent the internal 
hydrologic structure of a watershed model. The Sava River watershed was of 
particular interest, with its variable hydrological conditions and its previous 
hydrologic analysis in support of military operations. A large-scale watershed, 
such as the Mississippi River, was also analyzed to further demonstrate the 
capability of flood forecasting (rainfall-runoff process) by ANNs. 

In the Sava River analysis, data from the various stream gages was used as 
input. The goal was to determine and select input from those sites that afforded 
the maximum warning time for military operations further downstream. 

This report provides a general overview of ANNs and important concepts 
associated with them. (Chapter 2 and Appendix A). This report also addresses 
the approach used in selecting the best algorithm to operate an ANN for 
hydrological forecasting (Appendix B) and to discuss the practical implementa- 
tion of an ANN model (Appendix C) when utilizing commercially available 
software to perform its operation. Furthermore, this report analyzes what is 
required to construct several ANN models with different time-scales for two 
totally different watersheds (Chapter 3 and 4). In follow-on discussion 
(Chapter 5), the following areas are highlighted: forecasting reliability due to the 
length of a training record, approach algorithms for use in different situations, 
data arrangement order for training, cross-validation, testing, and finally, the 
testing accuracy due to the selection of activation functions, and the performance 
of testing accuracy due to data representation. As a final wrap-up, technical 
findings and recommendations are stated in the conclusion. 
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2    An Introduction of the 
Computation Tool— 
Artificial Neural Networks 
(ANN) 

This chapter introduces a new computation tool, Artificial Neural Networks 
(ANN), used to conduct a hydrological analysis of two watersheds using flow 
and gage data. The appendixes in this report provide a more detailed description 
of the ANN modeling methodology used. Appendix A describes the learning 
strategies, major components for building ANNs, and procedures used to 
construct an ANN model. Appendix B lists the basic ANN algorithms used for 
hydrologic forecasting systems with an emphasis on the Back-Propagation (BP) 
algorithm. Appendix C illustrates the procedures used with the software, 
NeuroSolutions for Excel, and discusses the practical implementations this 
software has for ANN modeling and those associated learning processes. 

ANNs Features and Applications 

ANNs, quite simply, are computational devices or a universal approximator. 
They can be implemented in the form of a computer chip or simulated on con- 
ventional serial computers. ANN is a type of biologically inspired computational 
model based on the functioning of the human brain. Like humans, ANNs can 
learn to recognize patterns by repeated exposure to many different examples. The 
main feature, besides having the ability to learn, is to associate and to be error- 
tolerant. Unlike conventional problem-solving algorithms, ANNs can be trained 
to perform a particular task. This is done by presenting the system with a 
representative set of examples describing the problem, namely in the form of 
input and output pairing samples. 

ANNs will then extrapolate the mapping between input and output data. 
After training, the ANN can be used to recognize data that are similar to any of 
the examples shown during the training phase. The ANNs can even recognize 
incomplete or noisy data - an important feature that is often used for prediction, 
diagnosis or control purposes. Furthermore, ANNs have the ability to self- 
organize, therefore enabling segmentation or coarse coding of data. 
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Over the last few years, ANNs have seen many successful applications of 
neural computing in commercial, academic, and military applications. Their 
benefits include pattern recognition, process control, signal processing, and 
optimization. ANNs are presently being used to solve a variety of problems such 
as detection, estimation, discrimination, classification, optimization, prediction, 
interpolation, extrapolation, clustering, or some combination of these problems in 
many scientific and engineering applications. Typical hydrological applications 
that ANNs have the capability for is to model rainfall-runoff, stream flow, 
groundwater management, water quality simulation, and precipitation 
phenomena. 

Basic Structure of ANN 

An ANN's basic processing element is the "node", which is similar to a 
human's neuron structure. The node has one or more input lines and one or more 
output lines emulating from it. The input and output lines can be connected to 
other neighboring nodes to form an artificial "neural-like" network. If the neuron 
has multiple inputs, it sums the signal that it receives through the several input 
lines. These processing elements can receive input signals and then output infor- 
mation at a particular strength to the input paths of other processing elements 
through a connection weight that is modified as the system learns. Besides the 
input and output layers, there is an intermediate layer of neurons in between 
called the "hidden layer". Figure 1 shows a fully connected feedforward network 
with one hidden layer and output layer. Noted: This system consists of / nodes 
for input layer, / nodes for hidden layer, and k (k=J in this figure) nodes for 
output layer. 

A neuron collects information from all preceding neurons relative to the flow 
of the information and propagates its output to the neurons in the following layer. 
The output of each preceding neuron is modulated by a correspondent weight 
before affecting the activity of the neuron. This activity is then modified by an 
activiation function and becomes the final output of the neutron. The signal is 
then propagated to the neurons of the next layer. This process is demonstrated as 
Figure 2. 
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Figure 1.   Fully connected feedforward network with one hidden layer and output 
layer 

Chapter 2   An Introduction of the Computation Tool—Artificial Neural Networks (ANN) 



3 
CX   -^ 
5   ^ 
O 

O Ö 
"^ 2 
> o 

• 1—1 r-J 

< ^ 

9- 

o 

H 

V. 

Ö Ö 

K 

~Y  

a. a 

^ 

c o 

(D 

<D 
T3 
O 
E 
ro 
(U 
c 
"c 
o 

CM 

Chapter 2   An Introduction of the Computation Tool—Artificial Neural Networks (ANN) 



3    Sava River Application 

Sava River watershed and modeling needs for 
military operations 

The Sava River (Figures 3 and 4) is the largest river in the former 
Yugoslavia. Since Yugoslavia was divided into several new republics, the Sava 
River's origin is in Slovenia. The Sava River separates the countries of Croatia, 
Bosnia, and part of Serbia. The total drainage area at the confluence of the Sava 
and Danube River comprises 96 thousand square kilometers and the watershed 
length is 2,255 km. The length of the Sava River is 950 km. 

1 Radece Gauge 
5 Ornac Gauge 
7 Davor Gauge 
8 Slavonski Gauge 
9 Zupanja gauge 

Figure 3.   Sava River Basin and its flow stations used for the study 

During the peacekeeping mission in Bosnia, the prediction of river stages for 
military crossing became particularly important. The accuracy of prediction was 
critical to determine the schedule of military operations, especially the locations 
where floating bridges were constructed maintained. Therefore, a river flow and 
stage forecasting system was required to address changes in weather conditions. 
During the actual operating (Dec 95 - May 97) accurate river forecasts were 
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provided using a combination of river engineering expertise and lumped 
parameter numerical models. Post fact, the ANN method was applied to 
determine its ability to provide forecasts for the Sava River. 

Database Development for ANN models 

A number of river flows and stage data were available from two-dozen gage 
sites in both the mainstream and tributaries of the Sava River. These were 
collected during the actual operation. The best data files that can currently be 
used to construct the model are eight stations for river flow and two stations for 
river stage. These river flow stations are along the main portion of the Sava 
River. The data sets include one year of daily mean flow (Figures 5 and 6) and 
forty years of monthly mean flow (Figures 7 and 8). The two most downstream 
stations, Zupanja and Slovonski Brod are bridge sites used by NATO forces for 
military peace keeping operations. In this analysis, these are gage stations 
(Gages 8 and 9). The daily river stage data (2-1/2 years, Figure 9) is only 
available for these two most downstream stations. This modeling effort was 
designed to find an alternative method to predict downstream flow and stage 
based on the minimum upstream information other than the numerical watershed 
model simulation. 

Sava River Stage Prediction Model 

Using the data available, a river stage-forecasting model was constructed 
using the Slavonski Brod gage (upstream, Gage 8) to predict the Zupanja gage 
(downstream, Gage 9). The data used consisted of 2.5 years of data. The ANN 
modeling procedure was divided into one training set (1 year), a cross-validation 
set (6 months) and a testing set (1 year). 

Since this is the first model described in the report, the procedure will be 
explained in more detail. This model was trained using Multilayer Perceptron 
(MLP) with a Back Propagation (BP) algorithm having one hidden layer and two 
input nodes. Using the NeuroSolutions software, the Multilayer Perceptron panel 
was used to set the parameters that are specific to this neural model. The number 
of inputs, outputs and exemplars are computed from the input data files. The only 
parameter to set for the MLP is the number of hidden layers. 

The hidden layer panel was used to specify the number of processing ele- 
ments (PEs), the type of nonlinearity, the type of learning rule, and the learning 
parameters of the first hidden layer. In this case, the network had two hidden PEs 
with linear axon type transfer function. The training uses momentum learning 
with a step size of 1.0 and momentum factor of 0.7. 

The output layer panel is the same as the previous panel in that the number of 
PEs is fixed to the number of output (1). It should be noted that the default step 
size is one magnitude smaller (set to 0.1) than the previous layer. This is because 
the error attenuates, as it is back propagated through the network. Since the error 
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is largest towards the output of the network, the output layer requires a smaller 
step size than that of the hidden layer in order to balance the weight updates. 

In the supervised learning panel, the maximum epochs (number of training 
iterations) are set to 1,000. However, the network may learn the problem in less 
iterations that this. Usually, the default configuration terminates the training 
when the error falls below 0.01. Figure 10 summaries the learning curve for the 
first 50 iterations. It compares the Mean Squared Error (MSE) for both training 
and cross-validation. At the 20th iteration, the cross-validation has reached its 
minimum value of the MSE. The optimal weights (total weights is not necessary 
to be 1) for these stage prediction models are: 

Hidden Axon = LinearAxon (0.0636; 0.1251) 
Output Axon = LinearAxon (0.1400) 
Hidden Weights = (0.7638; -1.7133) 
Output Weights =(0.2074;-0. 04714) 

Table 1 is a summary of performance based on six statistical measurements. 
These six measurements are: Mean Squared Error, Normalized Mean Squared 
Error, Mean Absolute Error, Minimum Absolute Error, Maximum Absolute Error 
and the Correlation Coefficient. The 3 major components for building an 
Artificial Neural Network, in this order, are: Training, Cross-Validation and 
Testing. Based on the results in Table 1, the three stages used in building the 
ANN show very good training and prediction results with high correlation 
coefficients and low normalized mean square error. However, with the 
increasing number of NMSE and the lowering in the numerical value of the 
correlation coefficient from training to testing, it appears the model is not fully 
generalized. This is because there is a time lag between these two stations for 
signal traveling. Figures 11 through 13 show the graphical comparisons between 
ANN model results and field measurements as training, cross-validation and 
testing respectively. 

In order to examine the model forecasting capability, the forecasting ranges 
were set up to an analysis period of present to 3 days ahead and several scenarios 
were conducted. For example, a forecasting model was constructed by using 
current and previous 2-day stage data at the upstream location (Slavonski Brod) 
as inputs and using up to 3 days ahead stage data at the downstream location 
(Zupanja) as the output. This formed a three-input/three-output system. This 
model was again trained by a MLP with a BP algorithm. The performance 
analysis of this model is summarized as Table 2. This approach eliminates the 
loss information for forecasting due to past information. With these results, it is 
expected about 0.52 meters mean absolute error and a correlation coefficient of 
0.911. It also explained the fact that the forecasting reliability decreases with the 
length of forecasting increases. 
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Table 1 
Performance Analysis of Sava River Stage (m) Prediction Model 
with MPLs 

Training Cross-Validation Testing 

MSE 0.0936 0.0601 0.2069 
NMSE 0.0183 0.0166 0.0592 
MAE 0.2385 0.1894 0.2661 
Min Abs Error 0.0005 0.0009 0.0018 
Max Abs Error 1.2870 0.8747 2.6596 
R 0.9908 0.9931 0.9725 

Sava River Daily Flow Prediction Model 

As described above, a data file for river flow exists only for eight stations 
along the main portion of the Sava River from upstream to downstream. 
Station 8 (Slavonski Brod) is the most downstream gage (no flow gauge at 
Zupanja) and one of two military bridging sites. From the preliminary analysis 
for river flow distribution, the first four stations show very similar flow patterns. 
The flow pattern starts to change at station 5 (Ornac) due to merging tributary 
flow into the Sava River. The flow pattern change even more rapidly from 
station 5 to station 7 (Davor) due to the more complicated hydrographic 
conditions and geomorphology. 

Only one-year of flow data was available. Therefore, the length of the 
training set becomes shorter. Thus, it was decided to use two locations as the 
inputs: one model using station 1 and station 5 with time lags, trying to predict 
the flow at station 8. Since there is obvious time lag between station 1 and 
station 5 and station 8, the model input's preparation gets more complicated if the 
Multilayer Perceptron Algorithm has to be used. This type of algorithm is called 
a static classifier. It means that the input-output map depends only on the present 
input. If it needs to process temporal data, then each time the sample has to be 
fed to a different input. The result is a very large network. The time-lagged 
recurrent network (TLRN) model can overcome this disadvantage. TLRNs are 
MLPs extended with short-term memory structures that have local recurrent 
connections. The TLRN is a very appropriate model for processing temporal 
information. The operation procedure for TLRN will not discussed here. 

The computational results using TLRN for two-inputs/one output river flow 
system are presented in Figures 14 through 16. While the training (6 month's 
data) shows a fair agreement, the cross-validation data (1 month) and testing data 
(5 months) overestimate the results with some degree of deviation. 

The explanation for the difference in the results is: the first 6 months' flow 
patterns are quite different from the last six month patterns and the record for 
training is not long enough to adjust the difference from station 1 and 5 to 
station 8. In addition, the period of hydrologic cycle is an annual event. In order 
for an ANN to learn different patterns, a multiple annual cycle data would be 
more beneficial. Some improvement was found if the input series also included 
station 7. Figures 17 through 19 show the revised model results. 
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Table 2 
Performance Analysis of Sava River Stage Prediction 

Training Cross-Validation Testing 

MSE 0.2400 0.4362 0.6714 
NMSE 0.0682 0.1241 0.1913 
MAE 0.2801 0.3922 0.5236 
Min Abs Error 0.0019 0.0005 0.0005 
Max Abs Error 3.2841 4.6113 5.1429 
R 0.9708 0.9449 0.9115 

Sava River Monthly Flow Prediction Model 

With the modeling experience regarding the flow prediction described above, 
it is interesting to investigate the ANN performance with different time scales. 
Presently, there exists forty years of historical (1926-1965) monthly mean flow 
data for the Sava River. The TLRN was used to establish an ANN model 
segmenting the forty years of data as follows: First fifteen years data (1926-1940) 
as the training set, the next ten years data (1941-1950) as the cross-validation set, 
and the last fifteen years data (1951-1965) as the testing set. This model used 
gage stations' 1 (Radece), 5 (Jasenov) and 7 (Slavonski Brod) as inputs and 
station 8 (Zupanja) as the output. Results: a good agreement (0.0208 meter 
NMSE and 0.9898 correlation coefficient) was found in the testing performance. 

A second scenario was investigated. Here, station 7 was disregarded as one 
of the inputs and the performance was investigated. The results were 
surprisingly satisfactory. The correlation coefficient did slightly drop to 0.9778. 
Figures 20 through 22 show the performance of the 3 learning stages. 
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4    A Mississippi River 
Segment Application 

The Mississippi River Basin (Figure 23) is the largest watershed in the 
United States. Understanding the dynamic changes of this river flow system is a 
subject of nationwide concern. In this chapter, a rainfall-runoff model using 
ANNs was incorporated in a segment of the lower portion of the Mississippi 
River. The purpose was to compare the diverse flexibility of ANNs in its ability 
to test, analyze and predict hydrological characteristics of a larger, more data 
rich, watershed compared to our earlier analysis with the Sava River Basin. 
Figure 24, below, shows the segment of the lower Mississippi River that was 
used in this study. 

Watershed Description 

The Lower Mississippi River is considered to begin at Cairo, IL at the 
confluence of the Ohio and Middle Mississippi Rivers. It travels southward a 
distance of approximately 954 miles emptying in the Gulf of Mexico at Head of 
Passes, LA. In 1973, a serious flood occurred in the Lower Mississippi River. 
The peak flows for the crest stages were over 1.5 million cfs. Major flooding 
that occurred during that time showed the need for a system that better forecasts 
river stage/ river flow characteristics. This could prove vital in the future to 
serve as an essential tool in reducing flood damage through better forecasting 
systems if these conditions would happen again. 

In this study, ANN was used to predict the river flow at Memphis, TN, from 
the upstream gage at Thebes, IL, near the confluence with the Ohio River. The 
gage station at Metropolis, Illinois provided characteristic flow of the Ohio 
River. Further downstream, we considered the lateral contributions of the 
tributaries: Obion, Hatchie, Loosahatchie, and Wolf Rivers in West Tennessee, as 
well as precipitation influence throughout this river basin. The combined flow in 
the Mississippi River below the confluence point is approximately 55 percent out 
of the Ohio River and 45 percent out of the Mississippi River main stem. 
Therefore, the purpose of this study was to identify the prediction capability with 
minimum hydrologic information using ANNs to determine the contribution of 
the Ohio River to flooding portions of the lower Mississippi River Basin. Under 
this consideration, two upstream river flow gages were used as the model input 
instead of using one combined river flow that represented both input values from 
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Thebes, II, 

Metropolis, IL 

Memphis, TN Flow Station 
Rain Gauge 

Figure 24. A Mississippi River segment watershed 

the Middle Mississippi and Ohio Rivers. This was essential to further examine 
attributions in our ANN modeling by both river systems prior to the flow 
confluence. 

Database Development and Preliminary Data 
Analysis 

A database was developed using 16 years (from 1975 to 1990) of daily river 
flow data from three major stations Thebes, Illinois (Upper portion of Mississippi 
River), Metropolis, Illinois (Ohio River), and Memphis, Tennessee; (Figure 25); 
four river tributaries in Western Tennessee using the closet gage reading to the 
Mississippi River on each tributary; (Figure 26). Some of the data had missing 
values, ranging from several months to a two-year lapse. Reconstruction and 
estimation of these data sets were established by the regression method, drainage 
area ratio and transfer function model using ANN. Additionally, we applied 
daily record from ten precipitation collection stations (Figure 27), which were 
uniformly (approximately selected) distributed over the study portion of the river 
basin. 
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A preliminary data analysis was conducted by a series of X-Y plots between 
the downstream flow and possible inputs. Figure 28 examined the relationship 
between each tributary and the downstream flow patterns. While the Obion River 
shows some contribution to the flow rate at Memphis, the Loosahatchie, Hatchie 
and Wolf Rivers are not strongly related it. Since this correlation is highly 
nonlinear due to the hydrologic processes and time-lagged for signal travel, it 
was determined to combine all four tributaries as one single lateral contribution. 
The similar treatment also is applied to the total precipitation. Under this 
consideration, Figure 29 represents the correlation of four major inputs with the 
downstream flow as the output. The ranking of data input significance for this 
study is the contribution of main stem of the Mississippi River at Thebes, Ohio 
River at Metropolis, total tributary flows, and precipitation values in this region. 

ANN Rainfall-Runoff Model 

With our study of the Mississippi River, we analyzed different configurations 
of neural network models, those that varied the input layer structure, to compare 
numerical results. These results are in the form of statistical parameters. Some 
of the more common parameters that were analyzed after our input variations 
were: Correlation Coefficient (CC) and Normalized Mean Squared Error 
(NMSE). Our approach for this study using ANNs started from the simplest 
structure (two inputs/one output) to more complicated hydrological systematic 
model (four input/one output). In other words, a rainfall-runoff model was first 
constructed using two upstream flows as inputs and the downstream river flow as 
the output. The first 6 years' of data were used as the training; the next 2 years' 
data used as the cross-validation set, and the last 8 years used as the testing data. 
A MLP feed-forward BP architecture design was adopted. Fairly high accuracy, 
statistically speaking, in comparing the testing sets based on the performance of 
NMSE and CC was evident. The CC ranges were 0.95, 0.93 and 0.94 for the 
training, cross-validation and testing sets respectively. However, graphical 
comparisons show the spikes match very well, but there was a noticeable phase 
shift that existed between the observed values and simulated outputs. This 
difference implies the consideration of time lags is required. 

The second test of this model was to use the Time Lagged Recurrent 
Networks (TLRNs). The TLRN approach produced a significant improvement. 
Excellent agreement for three learning stages is shown in Figures 30, 31 and 32. 
With an extremely high CC for both training and testing, this indicated that the 
downstream flow prediction might only require the information in the upper 
stream gages without the knowledge of the watershed characteristics (e.g. 
precipitation). 

The next scenario of this study was to add the rainfall factor and total 
tributary flow as the input variable. This gives three variables to the data set input 
for ANN modeling. While two different types of models consisting of three- 
input/one output systems (two upstream flow and total tributary; two upstream 
flow and total rainfall) are easy to converge for the training of a neural network, a 
model having four-input/one output model has the difficulty for convergence 
given a LinearAxon output activation function. In spite of changing the activation 
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to SigmoidAxon as the output activation function and increasing the total 
iteration numbers (4000) for training, this model still shows the lowest 
performance among these combinations. This is sometimes the case with ANN 
modeling procedures. The more familiar the neural net modeler is with model 
design, the easier it becomes to determine the correct "recipe" in producing a 
reliable artificial neural network model. 

Table 3 summarizes the performance for this variable input ANN build 
scenario. No additional improvement is gained from both the total rainfall and 
total tributary flow. The reason could be the hydrologic process is a highly 
nonlinear relationship. The rainfall contribution to the flow system is related to 
the infiltration rate, soil moisture content and other interactions. We concluded 
contribution of tributary flow is very minor compared to the magnitude of 
Mississippi River flow scale. The physical reason requires further research, such 
as using the difference between downstream and upstream flows as the model 
output to identify the contribution of total rainfall and total and/or individual 
tributary factors. 

Table 3 
Performance Analysis of Mississippi River Segment R - R Model 

Input x Output 
Training Cross-Validation Testing 

NMSE r NMSE r NMSE r 

2x 1 0.0190 0.9905 0.0774 0.9638 0.0210 0.9911 
3 .< 1 (Precipitation) 0.0211 0.9895 0.0956 0.9545 0.0226 0.9906 
3 x 1 (Flow) 0.0216 0.9892 0.0974 0.9527 0.0260 0.9886 
4 < 1 0.0503 0.9751 0.1384 0.9306 0.0552 0.9728 

NMSE = Normalized Mean Squared Error, 
r = Correlation Coefficient. 

Another alternative to check the performance of network training, such as the 
sensitivity analysis, is to know the effect that each of the inputs is having on the 
network output. This provides feedback as to which input variables are the most 
significant. The process by removing the insignificant variables can reduce the 
size of the network, which in turn reduces the complexity and the training times. 
The basic idea of the sensitivity analysis about mean is that the inputs to the 
network are shifted slightly and the corresponding change in the output is 
reported either as a percentage or a raw difference. Figure 33 shows the 
significance for each input related to the output. Our result from this study 
indicated the total rainfall and total tributary flow still remain minor influences to 
the model. 
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Figure 33a-b.   The sensitivity analysis about mean for four-inputs/one output riverflow 
prediction model of Mississippi River segment (a) upstream station 
Thebes (b) upstream station Metropolis 

52 Chapter 4   A Mississippi River Segment Application 



Network Output(s) for Varied Input total trib flow 

f  dwonstrm | 

-1480.832  377.077  2234.9 4092.895  5950.803  7808.712  9566.621  11624.530 13382.438 15240.348 17098.256 18956.166 

Varied Input total trib flow 

Network Output(s) for Varied Input total area precip 

-1.482 -0.995 -0.508 -0.021 0.466 0.953 1.440 1.927 2.413 2.900 3.387 3.874 

Varied Input total area precip 

Figure 33c-d. The sensitivity analysis about mean for four-inputs/one output riverflow 
prediction model of Mississippi River segment (c) total tributary flow 
(d) total area precipitation 
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5    Discussions 

To fully develop an ANN model requires the knowledge of existing methods 
necessary to address specific problem solving. This problem solving is usually in 
the form of choosing a mathematical algorithm, as applied to an artificial neural 
network, to determine the "best fit" of data that best represents a specified 
nonlinear data relationship, having the best global minimum results, in the 
shortest time.   The course of constructing reliable models usually, from 
experience, requires several trial-and-error attempts at first. This chapter 
addresses several findings and particular goals investigated with our research 
using ANN modeling for a general hydrologic forecasting system and what was 
determined "best" depending on the specific situation. 

Forecasting Reliability due to the Length of 
Training Record 

It is interesting to know how reliable a prediction would be if only limited 
data were available. This was demonstrated in our Sava River Study by selecting 
a single station and repeating the model run with different record lengths. The 
river stage at the Zupanja site was selected to perform this test. 

Nine test runs with MLPs were conducted with different lengths of training, 
cross-validation, and testing data with forecasting ranges from 1 day to 3 days. 
The results of testing are summarized in Table 4. Six statistical parameters were 
used to determine the prediction reliability. This table provides the forecasting 
reliability giving the length of record and expected criterion of accuracy for this 
station. The reliability usually decreased, as the training record length got shorter. 
For example, for only a 3 months' record, a 3-day prediction has over 1-m 
prediction error (1.02m) and the correlation coefficient (CC) is about 0.92. 

Prediction Reliability due to Approach Algorithms 

With computers continually advancing in technology and speed, the training 
time required to operate different algorithms in artificial neural networks may no 
longer be such a critical factor if the training record is short and the design 
architecture is not complex. The testing accuracy could worsen if the selection of 
the algorithm to represent the problem is not proper for the modeling simulation. 
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Table 4 
Prediction Reliability Due to the Length of Training Record for 
Sava River Stage Prediction Model 

MSE NMSE MAE Min Abs E Max Abs Error r 

1 yr training 1 day p. 0.0821 0.0233 0.2015 0.0002 1.3868 0.9884 
2 day p 0.2838 0.0808 0.4020 0.0027 2.3479 0.9595 
3 day p 0.5554 0.1583 05802 0.0036 3.2460 0.9203 

6 mo training 1 day p 0.1125 0.0241 0.2336 0.0004 2.0161 0.9885 
2 day p 0.3413 0.0731 0.4075 0.0001 3.3268 0.9628 
3 day p 0.6491 0.1390 0.5990 0.0024 3.8329 0.9283 

3 mo training 1 day p 0.6955 0.2053 0.6783 0.0041 1.5347 0.9731 
2 day p 0.9933 0.3041 0.8544 0.0034 1.7320 0.9489 
3 day p 1.3350 0.4227 1.0194 0.0201 1.9215 0.9174 

Four different algorithms for the example of the river flow prediction of the 
Mississippi River were used to demonstrate this comparison (Table 5). While the 
traditional BP algorithm without time shift input process showed the least 
accuracy, the Recurrent Algorithm represented the best results. The results 
indicate that the information from input to output mapping with certain memory 
length and strong nonlinearity can best describe this hydrological phenomenon. 
In this examination, the maximum iteration number (1,000) was set; therefore, 
the other algorithms may perform good training if they have more time to 
converge, such as with a Time-Lagged Algorithm (result being very close to the 
results with a Recurrent Network). The same test (Table 6) was also investigated 
by using the upstream-downstream river stage data set from the Sava River. 
While the TLRN derived the best result, the Radial Basis Function (RBF) 
algorithm obtained the largest error. The poor performance of testing for the 
RBF is mainly due to the high NMSE obtained during the cross-validation 
process. 

Table 5 
Prediction Reliability Due to Approach Algorithms for Mississippi 
River Segment Model 

Backpropagation 
Backpropagation with 
Time Shift Input Time-Delay Recurrent 

Training NMSE 0.0966 0.0303 0.0194 0.0168 
R 0.9505 0.9847 0.9903 0.9918 

Cross-V NMSE 0.1448 0.0416 0.0665 0.0652 
R 0.9286 0.9807 0.9679 0.9680 

Testing NMSE 0.1042 0.0344 0.0210 0.0171 
R 0.9475 0.9834 0.9909 0.9922 

Table 6 
Comparison of Model Prediction Reliability Due to Approach 
Algorithms 

Backpropagation 
Backpropagation with 
Time Shift Input Time-Delay Recurrent 

Training NMSE 0.0966 0.0303 0.0194 0.0168 
R 0.9505 0.9847 0.9903 0.9918 

Cross-V NMSE 0.1448 0.0416 0.0665 0.0652 
R 0.9286 0.9807 0.9679 0.9680 

Testing NMSE 0.1042 0.0344 0.0210 0.0171 
R 0.9475 0.9834 0.9909 0.9922 
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In summary, the Time-Lagged and Recurrent Algorithms are good 
candidates for hydrological forecasting; both in flow or stage data analysis. The 
performance of testing is also related to the learning processes such as learning 
rate and momentum factor. It requires further testing for other algorithms. 

Testing Accuracy due to the order of Data 
Arrangement 

The regular data arrangement for conducting the learning and reasoning 
processes is to use the time sequence order. For example, the training data set 
usually uses the earliest occurred information. However, for real application, 
such as missing data recovery, it might need to solve the interpolation or 
extrapolation problem. The accuracy of this prediction due to the order of 
training, cross-validation, and testing has to be examined. 

An approach using an arrangement of four different data sequences was 
designed appearing as Figure 34 for the Mississippi River two-input/one output 
application. The RUNO is the original arrangement (first 6 years' as training, the 
next two years as cross-validation, and the last eight years as the testing). The 
performance of the NMSE and correlation coefficient for each case is 
summarized as Table 7. The excellent performance and similar result were found 
for each case. However, the better correlation coefficient was obtained when 
using the latest portion of data set as the training information. 

Table 7 
Performance Analysis of AN N due to Data Arrangement 

Training Cross-Validation Testing 
NMSE r NMSE r NMSE r 

Run 0 0.0190 0.9905 0.0744 0.9638 0.0210 0.9911 
Run 1 0.0232 0.9883 0.0265 0.9895 0.0169 0.9925 
Run 2 0.0159 0.9920 0.0389 0.9816 0.0259 0.9896 
Run 3 0.0177 0.9911 0.0191 0.9905 0.0208 0.9915 

NMSE = Normalized Mean Squared Error, 
r = Correlation Coefficient. 

Selection of Activation Functions for Time-Lagged 
Recurrent Networks 

From the Sava and Mississippi Rivers studies, the TLRN was a very 
attractive and appropriate model for processing temporal information. Since the 
training algorithm used with TLRNs is more advanced than standard BP, the 
selection of these activation functions for the hidden layers and output layer is 
crucial to obtain good learning process. For the hidden layer process element, 
the TLRN has special memory system, such as TDNNAxon, GammaAxon, and 
LaguarreAxon. The TDNN memory structure is simply a cascade of ideal delays. 
The gamma memory is a cascade of leaky integration. The Laguarre memory is 
slightly more sophisticated than the gamma memory in that it orthogonalizes the 
memory space. 
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For the output layer process element, several activation functions, such as 
LinearAxon and SigmoidAxon, can be selected. This section (Table 8) 
summarizes the test for different combinations of activation functions of hidden 
layer and output layer using forty years monthly mean flow data at Sava River 
(three input/one output system). 

Table 8 
Performance Analysis of Sava River, 3 Input x 1 Output, 40 yr Monthly Data 
Transfer Function Training Cross-Validation Correlation Coefficient (r) Comparison 
Hidden Layer/Output Layer FMSE MMSE FMSE MMSE Time (sec) Training C-V Testing 

TDNN/Linear Axon 0.0030 0.0030 0.0024 0.0024 10 0.9829 0.9892 0.9898 
Gamma/Linear Axon 0.0029 0.0029 0.0018 0.0018 8 0.9835 0.9823 0.9934 
Laguarre/Linear Axon 0.0029 0.0029 0.0018 0.0018 20 0.9836 0.9922 0.9932 
TDNN/Tanh Axon 0.0041 0.0041 0.0091 0.0087 13 0.9712 0.9625 0.945 
TDNN/Sigmoid Axon 0.0128 0.0128 0.0184 0.0184 11 0.7565 0.7494 0.7954 
TDNN/Linear Tanh Axon 0.0067 0.0067 0.0254 0.0249 10 0.9541 0.8706 0.9092 
TDNN/Bias Axon 0.0034 0.0034 0.0036 0.0036 10 0.9861 0.9906 0.9915 
TDNN/Axon 0.0023 0.0023 0.0026 0.0026 9 0.9865 0.9888 0.9906 
TDNN/Linear Sigmoid Axon 0.0105 0.0105 0.0153 0.0153 10 0.7243 0.6963 0.7531 

FMSE = Final Mean Squared Error. 
MMSE = Minimum Mean Squared Error. 
r = Correlation Coefficient. 

The best combinations are TDNN/Linear Axon, Gamma/Linear Axon, 
Laguarre/LinearAxon, TDNN/Bias Axon, and TDNN/Axon. The performance 
analysis, using the correlation coefficient as comparison, was over 0.99 for each 
of these combinations. However, the Laguarre/Linear Axon takes more time for 
train. The Sigmoid Axon and Linear Sigmoid Axon are slow convergent 
activation functions. The LinearAxon is a good choice for selection as an output 
process element and had the best performance overall. The Tanh (Hyperbolic 
Tangent) Axon family tended to overtrain, however. 

Testing Accuracy Due to Data Representation for 
the Mississippi River Segment Model 

In the previous chapter, it was concluded that an accurate downstream flow 
prediction while using ANNs, was a result of the gage data input from the two 
upstream flows. The total tributary flow and regional rainfall input contributed 
very little to improve the accuracy of the learning process for a time-lagged 
algorithm in ANNs. A sensitivity analysis or principal component analysis can 
be used to identify the most significant input variables to the desired output. 
However, in order to investigate how the data representation affects the ANNs 
model performance, a model run from a series of input/output topology was per- 
formed. In addition, another algorithm, Jordan-Elman partial recurrent network, 
was also considered to compare the performance of time-lagged networks. 

Two parameter structures (Columns 1 and 2 of Table 9), namely an input/ 
output parameter and an input variable parameter, were identified. The first 
parameter represents the number of input and output variables. For example, the 
parameter 4 x 1 represents a four-input and one-output system. The second 
parameter involves three variables that address the input data: upstream flow 
gages, tributary flow and precipitation. 
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Table 9 
Testing Accuracy Due to Data Representation for the Mississippi River Segment Model 

Input/Output 
Upstream Flow, 
Tributary, Rainfall 

Jordan-Elman Time Lagged Recurrent 
NMSE r NMSE r 

2x 1 (2, 0, 0) c 0.0227 0.9908 0 0.0210 0.9911 
4.< 1 (2, 2, 0) c 0.0206 0.9917 * 0.2267 0.9545 
3x 1 (2, 1,0) c 0.0231 0.9907 c 0.0260 0.9886 
6.< 1 (2, 4, 0) o 0.0269 0.9896 * 0.1152 0.9606 
8x 1 (2, 4, 2) c 0.0251 0.9898 * 0.1016 0.9614 

10.< 1 (2, 4, 4) * 0.8165 0.9364 * 0.1138 0.9497 
4.< 1 (2,1,1) c 0.0214 0.9912 * 0.0552 0.9728 

16 .< 1 (2, 4, 10) * 0.2425 0.8837 * 0.0963 0.9528 
Transfer function combinations (hidden layer/out put layer) 

o = Linear Axon/Linear Axon 
* = Sigmoid Axon/Sigmoid Axon 
NMSE = Normalized Mean Squared Error 
r = Correlation Coefficient 

Two conditions were considered to represent tributary and rainfall informa- 
tion. For simplification in training the ANN model, the total tributary and total 
rainfall data were obtained by the summation of four individual tributaries and 
sixteen rainfall stations respectively. However, this assumption led to an incon- 
sistency with the basic principles of a hydrological process-those nonlinearity 
and time-delay affects involved when constructing a model. Which meant, under 
these conditions, each input variable had the same travel time to pass the signal 
to the output variable. This summation process assumed that a linear superposi- 
tion principle applied, thus leading to a poor performance by the ANN model. 
Referring to Table 9, the second column lists the number of inputs in parenthesis 
based on those input values chosen, incorporating either upstream flow, tributary 
and rainfall data or a combination of two or all three values for the modeling 
process. 

From the preliminary data analysis, it was found that the Obion and Loosa- 
hatchie Rivers and four rainfall stations correlated to the downstream flow. 
Therefore, the value 2 individually represents these two rivers and the value 4 
individually represents all four rivers as the second element (tributary) of the 
input variable parameter. Two of the four rainfall stations, one station near the 
confluence of the main stem of Mississippi and Ohio Rivers and the other station 
close to Memphis, were slightly higher in correlation than the other two stations. 
Similarly, the value 2 of the third element for input variable parameter represents 
these two indicated two precipitation stations. The value 4 ofthat element 
represents four correlated precipitation stations. 

Two pairs of nonlinear transfer functions (activation), namely Linear 
Axon/Linear Axon and Sigmoid Axon/Sigmoid Axon were used to describe the 
nonlinearity of corresponding hidden/output layers for both algorithms. The 
maximum iteration was 1,000 and the NMSE and correlation coefficients were 
used to represent the performance for testing. 
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Several findings were summarized in Table 9: 

a. The Jordan-Elman partial recurrent network, in general, had better 
performance than the Time-lagged network, particularly when the 
number of input variables increases. This implied that the Jordan-Elman 
network has a stronger tolerance for "noise'' in a system. 

b. Rows 1, 2, 4, 5, 6, and 8 show the increasing dimension of individual 
tributary and rainfall information. From both NMSE and correlation 
coefficient, it can be concluded that the optimal performance occurred 
with an input variable parameter selection of (2,2,2). 

c. Rows 3 and 4 show the data representing tributary flow. Although there 
was no significant difference of performance between these two cases for 
Jordan-Elman networks, both networks' performance worsened with an 
input variable parameter (2,4,0). This indicated a bad performance 
would be expected if more uncorrected inputs were included. 

d. Rows 7 and 8 show the combined influence of both tributary and rainfall 
for data representation. Excellent performance was obtained by the input 
variable parameter (2,1,1) for a Jordan-Elman network. This indicated a 
simplification of data representation could contribute the improvement of 
performance. However, it might not be used to predict local simulation 
behavior since the local effect has been transferred to a summation 
variable. 
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6    Conclusions 

ANN algorithms were successfully applied to two different scale watershed 
systems for river flow and stage prediction, addressing two primary hydrological 
phenomenons: time delay and nonlinearity. 

In the lower portions of the Mississippi River, river flow characteristics at 
Memphis, TN can be predicted with a high degree of accuracy from two 
upstream gages, even with no rainfall data and tributary flow data provided. This 
model also can be used to analyze the influence (if any) by the flow input of the 
Ohio River downstream on the Mississippi River. The study shows that tributary 
flow contributes to the river flow prediction in the downstream portions of the 
river, but very little additional prediction accuracy was gained. Some possible 
explanations for this: With the compilation of tributary flow into one value from 
the summation of four separate data values, along with the summation often 
separate precipitation collection stations values into one value representing total 
rainfall, we are assuming that these non-linear relationships are and should be 
treated like a linear process. In essence, we are combining unlikely relationships 
between linear processes and group time-delay phenomena, and treating as a 
neural network that can be solved using a simple time delay problem. With 
additional input variables, performance will be affected by additional noise 
created by the network. It can be concluded that by using the minimum input 
variables that have good correlation to existing output variables, optimal 
performance will be achieved. 

Less accurate results were obtained for the Sava River daily flow study 
mainly due to the limited length of available data sets. The excellent performance 
was found by ANN model for forty years monthly mean data set for the Sava 
River. With two upstream data sets available, the model can accurately predict 
the downstream monthly flow. 

The prediction for river stage/flow can be obtained by generating the rela- 
tionship between training length and performance parameters. The proper selec- 
tion for a solution algorithm and activations for processing nonlinearity could 
help increase the model accuracy. The data arrangement sequence for learning 
and reasoning processes has very little influence to the model accuracy. How- 
ever, using the last portion of data as the training set might get better perform- 
ance when testing. The time-lagged recurrent network and Jordan-Elman partial 
recurrent network are good selections for investigating the river flow/stage fore- 
casting system. TDNN and LinearAxon is a candidate for process element of 
hidden layer and output layer respectively. 
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In conclusion, the best performance of an ANN for flow prediction, as all the 
ANNs modeling study, heavily depends on not only the length of the data sets 
but also whether the most significant patterns were included in the process. 
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Appendix A 
Fundamental Aspects of ANNs 

Learning Strategies 

Neural network models use supervised and unsupervised learning modes 
(Figure Al). Learning entails training the network by presenting training patterns 
to its visible layers. The aim of learning is to set the connection weights and 
internal representation so that the desired output is obtained. The most common 
performance measure of learning is to compare the mean squared error between 
the network output and the actual output value. 

In supervised learning, the neural network is trained with a data set in the 
form of input-output data pairs, provided by a "teacher". The network receives 
the input values and calculates an output, which is then compared with the 
correct value. The aim of the training is to teach the network to map a correct 
output vector for every input vector by developing appropriate connections in the 
model. A parameter searching procedure aims to minimize the error function and 
to obtain the optimal weights. After reaching the point where there are no 
additional weight changes required, that the neural network reaches global 
stability and is "trained." 

Unsupervised learning is conducted without the teacher, using a training data 
set, which consists only of input data. The neural network is training itself to 
achieve stability, when the weights attain constant values. This type of learning is 
suitable for applications dealing with the clustering of input data, reduction of 
input dimensions, data compression and similar types of applications. Networks 
trained by this method are called self-organizing networks. Examples of this: 
Adaptive Resonance Theory (ART) Network and Kohonen's Self-Organizing 
Feature Maps (SOFM) (Hush, Home 1993). The network can organize the inputs 
in any way it wishes. The processing elements can be organized in clusters with 
either competition or cooperation between the clusters occurring. 
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Major Components for Building Artificial Neural 
Networks 

(1) Training. A network learns by adjusting the biases and weights that link 
its neurons. Before actually training begins, a network's weights and biases must 
be set to small random values. Obtaining the best set of weights that will be 
utilized during the cross-validation and testing process is the main goal here. 

(2) Cross-validation. Method used in conjunction with Step 1, it is a process 
to monitor and finalize established weights derived through the training process. 
This is necessary to prevent over training. Over training can actually degrade 
performance on the test set. A portion of the training set should be set-aside for 
the purpose of Cross-Validation. 

(3) Testing. Proving the performance generalization of the neural networks 
and establishing the best set of weights to use to derive a global minimum error 
result. 

Procedures Used to Construct an ANN Model 

The neural network design and use life cycle is a complex dynamic process 
with many steps. NeuroSolution, Inc. (1999) summarizes the following steps 
used to construct a neural network: 

(1) Understand the data. Neural networks cannot be used as "black boxes", 
even in the best circumstances. There is no substitute for a firm understanding of 
the data. Explore the data in as many ways as possible. First: Try to understand 
the physical process that produced the data. 

(2) Plot the data. Examine the statistics for interpreting the data. Finally, Use 
digital signal processing analysis techniques to understand the data in the 
frequency domain. 
Preprocessing the data: Taking the insight gained from "understanding the data" 
and encoding it into the data. 

(3) Choose a desired Input-Output Mapping. Decide what the neural network 
is to accomplish. In particular, what is to be the desired input-output 
relationship? Sometimes this can require laborious hand coding of the data. 

(4) Choose a Neural Architecture. For regression, always start out with a 
linear network. For classification, always start out with a linear discriminant 
classifier. Even if these networks do not perform well, they provide a baseline 
comparison for other networks as you graduate in complexity. Also, a 
consideration here is whether an unsupervised network can perform the desired 
input-output mapping. 

(5) Train the Network. If possible, monitor the training with a subset of the 
training exemplars set aside as a cross-validation set. If the data are too small to 
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use cross-validation, then stop the training when the learning curve first starts to 
level off. 

(6) Repeat the Training. There is a high degree of variability in the 
performance of a network trained multiple times, but starting from different 
initial conditions. Therefore, the training should be repeated several times, 
varying the size of the network, and/or the learning parameters. Among those 
networks that perform the best (on the cross-validation set, if available), choose 
the one with the smallest number of free weights. 

(7) Perform Sensitivity Analysis. Sensitivity analysis measures the effect of 
small changes in the input channels on the output, and is computed over the 
whole training set. It can be used to identify superfluous input channels. 
Eliminate those channels and repeat the training process. 

(8) Test the Network on the New Data. This is where you put the network to 
use. If you have carefully followed the previous steps, the network should 
generalize well to new data. 

(9) Update the Training. Occasionally, when enough data are accumulated, 
include old test data in with the existing training set, and repeat the entire training 
process. 
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Appendix B 
ANN Algorithms for Hydrologie 
Forecasting 

Basic ANN Algorithms for Hydrologie Forecasting 
Systems 

(1) Multi-layered Feed Forward Neural Network (same as Figure B1). Also 
known as Multilayer Perceptrons (MLPs), these networks are typically 
trained with static backpropagation. These networks have found their 
way into countless applications requiring static pattern classification. 
Their main advantage is that they are easy to use, straightforward in 
conceptual design, and that they can approximate any input/output map. 
The key disadvantages are that they train slowly, and require large 
amounts of training data (typically three times more training samples than 
network weights). (NeuroDimension, 1999) 

(2) Time-Delayed Neural Network (TDNN), (Figure Bl). This incorporates 
the use of a static network to process time series data by simply 
converting the temporal sequence into a static pattern by unfolding the 
sequence over time. That is, time is treated as another dimension in the 
problem. The process is accomplished by feeding the input sequence 
into a tapped delay line of finite extent, then feeding the taps from the 
delay line into a static neural network architecture like a MLP. TDNNs 
have been successfully used and applied to nonlinear time series 
prediction problems. (Hush, et al, 1993) 

(3) Recurrent Neural Network (Figure B2). Consisting of two types: Fully 
recurrent networks feed back the hidden layer to itself. Partially recurrent 
networks start with a fully recurrent net and add a feedforward 
connection that bypasses the recurrence, effectively treating the recurrent 
part as a state memory. Recurrent networks have an infinite memory 
depth and thus find relationships through time as well as through the 
instantaneous input space. Most real-world data contains information in 
its time structure. These networks are state-of-the-art in nonlinear time 
series prediction, system identification, and temporal pattern 
classification. (NeuroDimension, 1999) 
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(4) Self-Organizing Linear Output (SOLO), (Figure B3). Consists of a 
hybrid model structure that links a .self-organizing feature map (SOFM) 
with a piece-wise locally /inear output mapping (LO). SOLO uses simple 
piecewise mappings to represent the system local input-output behavior. 
The overall structure results in a two-stage training procedure that is 
significantly less costly and easier to implement because it does not 
involve non-linear global optimization. (Hsu, et al, 1998) 

(5) Radial-Basis Function Neural Network (Figure B4). A Radial Basis 
Function (RBF) network is a two-layer network whose output nodes form 
a linear combination of the basis (or kernel) functions computed by the 
hidden layer nodes. The basis functions in the hidden layer produce a 
localized response to input stimulus. That is, they produce a significant 
nonzero response only when the input falls within a localized region of 
the input space. For this reason the network is sometimes referred to as 
the "localized receptive field" network. The RBF network can be used 
for both classification and functional approximation, just like the MLP. 
In theory, the RBF network, like the MLP, is capable of forming an 
arbitrarily close approximation to any continuous nonlinear mapping. 
The primary difference between the two is the nature of their basis 
functions. The basis functions in the RBF network cover only small- 
localized regions. (Hush, et al, 1993) 

Back-Propagation (BP) Training Algorithm 

The basic architecture of an ANNs is the MLP. MLPs are feed-forward nets 
with one or more layers of nodes between the input and output nodes. These 
additional layers contain hidden units or nodes that are not directly connected to 
both the input and output nodes. MLPs overcome many of the limitations of 
single-layer perceptrons, but were generally not used in the past because effective 
training algorithms were not available. The development of new algorithms has 
changed this outlook significantly. The capabilities of MLPs stem from the 
nonlinearities used within nodes. 

The BP Training Algorithm, which fully incorporates the MLP architecture, 
is currently the most general-purpose, commonly used neural-network paradigm. 
It is the most commonly used supervised training algorithm among the MLP. The 
development of the Back-Propagation Algorithm introduced a new method of 
modifying the network weights by minimizing the error between a target and 
computed objects. In back-propagation networks, the information is processed in 
the forward direction from the input layer to hidden layer(s) and then to the 
output layer. 

Optimization of training weights 

The objective of a Back-Propagation Network (BPN) is to find the weights 
that approximate target values of output with a selected accuracy. The Least- 
Mean-Square-Error Method along with the Generalized-Delta Rule is used to 
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optimize the network weights in BPN. The Gradient-Descent Method, along with 
the Chain Rule of Derivatives, is employed to modify the network weights. 

Basically, the BP Algorithm attempts to develop a function that correctly 
represents the given data set. The adjustment of the interconnection weights 
during training employs a method known as "error back propagation" in which 
the weight associated with each connection is adjusted by an amount proportional 
to the strength of the signal in the connection and the total measure of the error. 
(Rummelhart, 1986) 

When discussing the modification of network weights, the gradient descent 
method is analogous to an error-minimization process. Error-minimization is an 
attempt to fit a closed-form solution to a set of empirical data points, such that the 
solution deviates from the exact value by a minimal amount. In general, the back 
propagation-training algorithm is an iterative gradient algorithm designed to 
minimize the mean square error between the actual output of a multi-layer feed- 
forward perceptron and the desired output. It employs the techniques of 
propagating error terms required to adapt weights back from nodes in the output 
layer to nodes in lower (hidden) layers. 
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Operation of the BP algorithm 

The overall operation of the BP Algorithm is as follows: The net is trained by 
initially selecting small random weights and internal thresholds and then 
presenting all training data repeatedly (Lippmann, 1987). The learning process 
begins with the presentation of an input pattern to the BPN. The input pattern is 
propagated through the entire network until an output pattern is produced. The 
BPN then makes use of the "generalized delta rule" to determine the error for the 
current pattern contributed by every unit in the network. Finally, each unit 
modifies its input connection weights slightly in a direction that reduces its error 
signal, and the process is repeated for the next pattern (Lippmann, 1987; Skapura, 
1995). 

The error between the output of the network and target outputs is computed 
at the end of each forward pass. If an error is higher than a selected value, the 
procedure continues with a reverse pass; otherwise training is stopped. In the 
reverse pass, or actual "back propagation" function of this algorithm, the weights 
in the network are modified using the error value. The modification of weights in 
the output layer is different from the modification of weights in the intermediate 
layers because target values do not exist. Therefore, BP uses the derivatives of 
the objective function with respect to the weights in the entire network to 
distribute the error to neurons in each layer in the entire network (Wasserman, 
1990). 

The next input/output set is applied and the connection weights are 
readjusted to minimize this new error. In this way, the BP algorithm can be seen 
to be a form of gradient descent for finding the minimum value of the multi- 
dimensional error function. This procedure is repeated until all training data sets 
have been applied. The whole process is repeated starting from the first data set 
again, once more, and continued until the total error for all data sets is sufficiently 
small and subsequent adjustments to the weights are inconsequential. The ANNs 
is now said to have learned a relationship between the input and output training 
data and a function that best describes this non-linear data set has been derived. 
Now, the neural network is "trained". 

Mathematical description of BP 

MLPs extend the perceptron with hidden layers, i.e., layers of processing 
elements that are not connected to the external world. There are two important 
characteristics of the MLP. First, its processing elements are nonlinear. The 
nonlinearity function must be smooth. Second, they are fully interconnected such 
that any element of a given layer feeds the entire next layer. 

Zhang (1998) summarizes the procedures of the BP algorithm for three layer 
feed forward networks. The major steps are described as follows: 

Each input neuron k receives input signal xk(k^l,2... w, m is number of 
inputs) and sends this signal to all units in the following layers toward the output 
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layer. Meanwhile, each hidden neuron / (i=l,2...p) computes its total weighted 
input and applies to its activation function. 

Ut (n) =Z wik (n) xu (n) (1) 

Vi 4Mn)) (2) 

where wik is connection weight including bias, y- is output of hidden neuron / and 
input to output layer. 

Each output neuron / (./=/, 2... o, o is number of output neurons) computes its 
total weighted input and applies to its activation function. 

ui(n)=Iwii(n)yi(n) (3) 

yj(n)=f(uj(n)) (4) 

Each output neuron / receives a target value corresponding to the input training 
pattern to evaluate the error term and computes its local gradient S/n) 

Sj(n)=-ei(n)f'(uj)) (5) 

Then calculates and adjusts its connection weight 

wji (n) = wji (n-1) i rjSj (n) y,- (n) H aAwjt (n-1) (6) 

Each hidden neuron / receives propagated error term from output layer and 
computes its local gradient Si (n) 

SI(n)=f'(ui(n))ESi(n)wji (7) 

then calculates and adjusts its connection weight 

wik (n) = w^ (n-1) i r/Sj (n) xk (n) + aAwik (n-1) (8) 

The most important parameters are r| (learning rate) and a (momentum term). 
Momentum learning is an improvement to the straight gradient descent in the 
sense that a memory term (the past increment to the weight) is utilized to speed 
up and stabilize convergence. 
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Appendix C 
Practical Implementation to an 
ANN Model 

In this section, an overview for implementing an ANN model using the 
software, NeuroSolutions by NeuroDimensions, Inc., is discussed. A process to 
select comprehensive and user-friendly software has been conducted. For the 
supervised learning with our prediction capability, NeuroSolutions, a premier 
neural network simulation environment software, is adopted. We chose the 
"Professional" Level of this software package that was easily loaded on a 
standard personal computer and was designed to use in a Microsoft Excel 
environment. One of major features available in this software package is the 
"NeuralWizard" feature. NeuralWizard can be described as a sophisticated 
neural network builder that sends commands to NeuroSolutions to automatically 
construct a fully functional neural network. The object-oriented simulation 
environment of NeuroSolutions gives the user an unprecedented flexibility to 
construct neural network simulations. The NeuralWizard aids the user by 
encapsulating the network building rules and reducing the user decisions down to 
an easy, step-by-step procedure. The following sections summarize the important 
design and operational hints found in the supplemental material of instructions 
provided by NeuroDimensions, in combination with our working experience 
gained from this study. 

Using NeuroSolutions for Excel 

NeuroSolutions for Excel was designed to allow users to develop a complete 
solution to their own problem in one simple package. It gives the user flexibility 
to customize operations using Microsoft's Visual Basic for applications as a 
scripting language. Figure Cl shows a block diagram describing the order in 
which the NeuroSolutions for Excel modules can be used to solve the problem. 
Each step is described below: 

(1)  Preprocess data module: The main menu item includes differences, 
randomize rows, sample, moving average, translate symbolic columns, 
insert column labels. 
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Figure C1.   The NeuroSolutions for Excel modules 

(2) Analyze data module: It includes the options of correlation, time series 
plot, xy scatter plot, histogram plot, summary statistics, and trend 
accuracy. The first three options may be very useful as the screening tool 
to determine the data patterns and the relationships between the 
individual input and output functions. 

(3) Tag data module: The features of this module are to determine the 
input/output columns for the ANN model, to select data rows used for 
training, cross-validation, and testing, and to clear all tags when 
establishing new testing parameters. Other options allow the user to 
select a percentage of the data rows to be used for further analysis. 

(4) Create data files module: This module is used to create data files either 
for all tagged cross-sections within the active worksheet or just to create 
partial data files for a particular purpose, such as training files. 

(5) Create/Open network module: Starts the NeuralWizard, which guides the 
user through the creation of a new NeuroSolutions breadboard. This 
"breadboard", which is similar in design to that used in building an 
electrical circuit, serves as a diagram to summarize the configuration of 
the model structure and flow path. This building process, in turn, will 
select the different panels within NeuralWizard to select the model neural 
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network algorithm, learning parameters, non-linear transfer functions, 
and number of hidden layers and nodes. After a user completes their 
selection, it can be saved to the active NeuroSolutions breadboard. 

(6) Train network module: The active NeuroSolutions breadboard is trained 
one time and the best network weights are saved. The best network 
weights are saved at the specified "epoch" (or iteration) when the cross 
validation error is minimum, if a cross validation data set is used. A 
report of the training results is then generated. It contains the plot of the 
training mean-squared error (MSE) versus epochs and the cross 
validation MSE, and a table showing the minimum training MSE, the 
epoch at which this minimum training MSE occurred, and the final 
training MSE. 

(7) Test network module: Tests the active NeuroSolutions breadboard on the 
chosen data set and creates a report of the results. During testing, the 
learning is turned off and the chosen data set is fed through the network. 
The contents of this generated report vary based on whether the 
classification or regression reports type was selected. A table reporting 
the mean-squared error (MSE), normalized mean-squared error (NMSE), 
mean absolute error (MAE), maximum absolute error, minimum absolute 
error, and correlation coefficient for each output is then constructed. 

Practical Issues of Learning 

The performance of ANN learning is believed to be the most critical issue. 
There are mainly several practical aspects related to learning. Unfortunately, there 
are no formulas to select these parameters. Only some general rules apply and a 
lot of experimentation is necessary. 

(1)   Training set: The size of the training set is of fundamental importance to 
the practical usefulness of the network. If the training patterns do not 
convey all the characteristics of the problem class, the mapping 
discovered during training only applies to the training set. Thus the 
performance in the test will be much worse than the training set 
performance. The only general rules that can be formulated are to use a 
significant amount of data and use representative data. If it does not have 
significant amount of data to train the ANN, then the ANN paradigm is 
probably not the best solution to solve the problem. 

Another aspect of proper training is related to the relation between 
training set size and number of weights in the ANN. If the number of 
training examples is smaller than the number of weights, it will obviously 
produce poor generalization. A general rule: The number of training 
examples is at least double the number of network weights. When there is 
a big discrepancy between the performance in the training set and test set, 
it can be suspected as deficient training. Usually, one can always expect a 
drop in performance from the training set to the test set. In case a large 
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drop in performance (more than 10-15 %), it is recommended increasing 
the training set size and produce a different mixture of training and test 
examples. 

(2) Network size: Particularly, this refers to choosing the number of input 
and output nodes within the network, and also specifying the number of 
hidden layers within that network. At the present stage of knowledge, 
establishing the size of a network is more efficiently done through 
experimentation. The issue is the following: The number of processing 
elements in the hidden layer is associated with the mapping ability of the 
network. The larger the number, the more powerful the network. 
However, if one continues to increase the network size, there is a point 
where the generalization gets worse. This is due to the fact that we may 
be over-fitting the training set, so when the network works with patterns 
that it has never seen before the response becomes unpredictable. The 
problem is to find the smallest number of degrees of freedom that 
achieves the required performance in the test set. 

It is recommended to start with small sized networks and increase the 
size until the performance in the test set is appropriate. An alternative 
approach is to start with a larger network, and remove some of the 
weights. There are a few techniques, such as weight decay, that partially 
automate this idea. In NeuroSolutions, probing the hidden layer weight 
activation with the scopes can control the size of the network. 

(3) Learning parameters: The control of the learning parameters has been a 
problem with no solution in ANN research for a long time. The goal is 
that one wants to train as fast as possible and reach the best performance. 
Increasing the learning rate parameter will decrease the training time, but 
will also increase the possibility of divergence, and of routing around the 
optimal value. Since the weight correction is dependent upon the 
performance surface characteristics and learning rate, to obtain constant 
learning, an adaptive learning parameter is necessary. In general, 
modification of learning rates is possible under circumstances, but 
several other parameters are included that also need to be experimentally 
set. NeuroSolutions enables versatile control of the learning rates by 
implementing adaptive schemes. 

The conventional approach is to simply choose the learning rate and a 
momentum term. The momentum term imposes a memory factor on the 
adaptation, and has been shown to speedup adaptation while avoiding 
local minimum trapping to a certain extent. 

(4) Stop criteria: Stop learning criteria are based on monitoring the mean 
square error. The curve of the MSE as a function of time is called the 
learning curve. The most used criterion is probably to choose the number 
of iterations, but it can also preset the final error. When, between two 
consecutive iterations, the error does not drop at least a given amount, 
training should be terminated. This gives a criterion for comparing very 
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different topologies. Another possibility is to monitor the MSE for the 
test set, as in cross-validation. One should stop the learning when error in 
the test set increases. Usually, this is where the maximum generalization 
takes place. 

To implement this procedure we must train the ANN for a certain number 
of iterations, freeze the weights and test the performance in the test set. 
Then, return to the training set and continues learning. 
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